

Available online at ijci.wcci-international.org

International Journal of Curriculum and Instruction 14(2)

(2022) 1166–1188

IJCI
International Journal of

Curriculum and Instruction

1166

Using graph coloring for effective timetable

scheduling at ordinary secondary level

Emmanuel Deogratias a *

a Department of Mathematics and Statistics, University of Dodoma, P.O.Box 259, Dodoma, Tanzania

Abstract

The purpose of this study was to assess the effectiveness of timetable scheduling that was developed using

graph coloring for the class period time tabling. This study presents a study of using graph coloring for

effective timetable scheduling at ordinary secondary level, a case study of Dodoma central secondary school

in Dodoma city. Algorithms for timetable scheduling using graph coloring were developed, the training for

academic teachers on how to design a class periods timetable using graph coloring was offered, and the

developed class timetable through teachers’ opinions on the effectiveness of the new timetable was assessed.

It was found that the new timetable was effective because it eliminated collisions among teachers while using

the timetable. This finding has implications on teaching and learning process by using an effective timetable

preparation and implementation.

Keywords: Graph colouring; Python programming language; Timetabling; secondary school

© 2016 IJCI & the Authors. Published by International Journal of Curriculum and Instruction (IJCI). This is an open-

access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY-NC-ND)

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Teachers at schools in Tanzania use timetable scheduling to attend classes and for

invigilation of examinations (mid-term, terminal and annual examinations). However,

there have been a challenge of preparing this timetable (Carter, Laporte & Lee, 1996).

One of the challenges is overlapping of teaching class periods. The same teacher is

allocated at two or more class periods at the same time (Burke, Elliman, & Weare, 1994).

Another challenge is that some schools in Tanzania still using traditional approach of

preparing timetable such as using excel and MS word. This study used graph coloring to

eliminate these challenges during teaching and examination invigilation by formulating

an algorithm using python programming language. Academic teachers at one of

* Corresponding author name. Phone.: +0-000-000-0000

 E-mail address: author@institution.xxx

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1167

secondary schools in Dodoma were also trained on how to use graph coloring and python

programming language to prepare timetable.

Main objective of this study was to assess effectiveness of a new class timetable that was

developed using graph coloring after being used at ordinary secondary school level. The

following were specific objectives:

 To formulate an algorithm using graph coloring for effective timetable scheduling

at ordinary secondary school level.

 To develop timetable scheduling of the class periods using graph coloring.

 To assess how the developed class timetable using graph coloring is effective in

teaching and learning process.

 To provide training to teachers on how to prepare class timetable using graph

coloring.

The intention of this study was to provide knowledge and skills to teachers on how to

prepare class timetable that will be friendly for teaching and learning. Also, this study

informs teachers in secondary schools on how they can design class timetable using

graph coloring to avoid collision of the class periods among teachers as well as to avoid

conflicts among teachers while using class timetable scheduling.

The study focused on exploring the following research questions:

 How an algorithm can be formulated using graph coloring and python

programming language for effective timetable scheduling at ordinary secondary

school level?

 How can timetable scheduling of the class periods be developed using graph

coloring?

 How can the developed timetable using graph coloring be assessed for effective

teaching and learning process?

 How can teachers be trained on how to prepare class timetable using graph

coloring?

2. An informative literature reviews

Discuss Graph coloring is the process of assigning colors to the vertices of the graph so

that no two adjacent vertices are assigned the same color (Deo, 1990). While assigning

colors to an object, the focus is on its vertices, edges and faces. However, the key object is

the vertex coloring because other objects can be transformed into vertex version graph

coloring problems.

While coloring the graphs, the assumption is that graphs are connected in the sense

that all components of the graphs are connected and can be colored dependently.

Graph coloring is applicable in various complex problems, including optimization

(Miner, Elmohamed & Yau,1995). For example, we can use graph coloring to optimize

partition of mutually exclusive events. The same approach can be used to focus on

1168 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

developing and exploring time tabling and class time tabling at ordinary secondary level.

This approach can be used because graph coloring is a heuristic algorithm which deals

with timetable scheduling to satisfy the teaching and learning requirements involving

subjects demand and their combination. Subject conflict graph is constructed in such a

way that subjects represent nodes while edges represent conflicting subjects having

common students (Welsh & Powell, 1967).

Various work has been done by different scholars on the problem of subject scheduling

by using graph coloring (Carter, 1986; Kiaer & Yellen, 1992). The authors used the

relationship between time tabling and graph coloring to solve (or approximately solve)

the minimum coloring problem more efficiently. They were also successfully in coloring

graphs that arise from time tabling problem, more specifically examination time tabling

problems.

Welsh and Powell (1967) illustrated the relationship between time tabling and graph

coloring and developed a new general graph coloring algorithm to solve the minimum

coloring problem more efficiently.

Dutton and Bingham (1981) also introduced two of the most popular heuristic graph

coloring algorithms. Considering each color one by one, a clique is formed by continually

merging the two vertices with the most common adjacent vertices. On completion,

identical coloring is applied to all the vertices which are merged into the same.

Through developing color algorithms, other scholars were able to use this concept to

solve problem of time tabling. For instance, Carter (1986) conducted an examination time

tabling survey. The developed examination time tabling schedule using graph coloring

was accepted and used by many educational institutions to solve their examination

timetabling problems.

According to Carter in his survey, his work is significant as it has the objective of

obtaining “conflict-free” schedules, given a fixed number of time periods turned out to be

one of the most complex timetabling applications.

Kiaer and Yellen (1992) also described heuristic algorithm using graph coloring

approach to find approximate solutions for a University course timetabling problem. The

algorithm using a weighted graph to model the problem aimed at finding a least cost K-

coloring of the graph. K represents the number of available time slots while minimizing

conflicts.

From the literature review, it was found that all researchers focused on timetable

scheduling for colleges and for universities, but this project focused on assessing how

graph coloring can be effective for timetable scheduling at ordinary secondary school

level. Also, no research that has been conducted in Tanzanian ordinary secondary schools

to investigate the effectiveness of timetable scheduling using graph coloring.

Furthermore, there have been software used in preparing timetable in Tanzania

including using python. This is usually done to schools in urban areas where there is

availability of electricity and internet access. However, most of secondary school teachers

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1169

in rural areas use manual, MS word and excel to prepare class timetable. For example,

teachers in Dodoma Central secondary school still use excel to prepare class timetable.

This study used graph coloring for preparing class timetable for ordinary secondary

school level.

3. Method

This was a qualitative study in nature (Merriam, 1988, 1998, 2009). In this study

qualitative case study was used because the study focused on opinions of the teachers

after using the new developed timetable using graph coloring and python programming

language.

Two academic teachers at Dodoma central secondary school was trained on how to use

graph coloring and python programming language to develop class timetable. A new class

timetable was developed using graph coloring and python programming language and

implemented in the class for a duration of two weeks. After that, five teachers were asked

to bring their opinions on how the new timetable informed their teaching in the

classrooms.

In this study the data were collected by using prepared reflective questions (Appendix

A) and using tape recorders to gather opinions from the teachers after using the new

timetable.

Content analysis was used to analyze data gathered using tape recorders. Content

analysis involved three steps: preparing data, organizing data, and reporting results (Elo

et al., 2014). Also, python programming language was used to develop algorithms for

timetable construction by generating codes (see Appendix B).

The reliability of this study was checked and found that since the same procedures and

process for preparing timetable using graph coloring were used by academic teachers

after training, then the results are reliable. Also, the validity of the study was checked

and found that the academic teachers were able to develop a class timetable after

training using graph coloring and python programming language.

Ethical considerations revealed in this study including applying a letter of permission

for data collection at Dodoma central secondary school, teachers at Dodoma central

school were asked to volunteer participating in this study, and teachers were asked for

the consent before conducting this study.

4. Results

4.1 Developed algorithms for class timetabling using graph coloring

According to this study of using graph coloring for effective timetable scheduling, the

general codes were constructed that were used to develop the general timetable for

1170 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

Dodoma central secondary school. The following are the algorithms that were developed

using python programming language and later were used to construct class timetable.

i. Import the necessary library

 Pathlib

 Csv (Comma separated value)

ii. Creating empty list for

 Subjects

 Class list

 Starting hour for first subject-7

 Defining next subject hour-8

 Defining school days

 Monday

 Tuesday

 Wednesday

 Thursday

 Friday

iii. Function to fill the subjects

// Ask user the subject and fill in subject list

// Accept user input (in string format)

// Separate the subject list by comma

// Loop the entire list {

Loop the subject list and transform in capital letter

If (not a subject in list) {

Append the subject

iv. Function for planning time () {

// Ask hour to user

// Output the subject list first

// Specify time for subject

Let user to enter the subject at the specified time

Return user answer

}

v. Function to fill the subjects

// Ask user the subject and fill in subject list

// Accept user input (in string format)

// Separate the subject list by comma

// Loop the entire list {

Loop the subject list and transform in capital letter

If (not a subject in list) {

Append the subject

vi. Function for planning time () {

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1171

// Ask hour to user

// Output the subject list first

// Specify time for subject

Let user to enter the subject at the specified time

Return user answer

}

vii. Function for filling timetable () {

// Allocate the school days

// Loop when time is less to 4

Specify format

//If time is midday, then it is break time

// If not then continue to fill subject for that day

}

viii. Save data to excel format

Function for saving and writing records () {

//Recall the list

// Fill into specified file path

//Notify user if data is already created

}

4.2 Developed class timetable using graph coloring

From the developed algorithms using python programming language, a new class

timetable was developed as described below.

Table 1. Timetable for Dodoma central secondary school

 Day Time Period Form 1 Form II Form III Form IV

 Monday 8h-9h 1 Chemistry English Mathematics Kiswahili

 9h-10h 2 Chemistry English Mathematics Kiswahili

 10h-11h 3 Break Time Break Time Break Time Break Time

 11h-12h 4 Civics Kiswahili Geography Biology

 Tuesday 8h-9h 1 Mathematics Kiswahili English Geography

 9h-10h 2 Mathematics Biology English Geography

 10h-11h 3 Break Time Break Time Break Time Break Time

 11h-12h 4 English Mathematics History Mathematics

 Wednesday 8h-9h 1 Physics English History Civics

 9h-10h 2 History English Kiswahili History

 10h-11h 3 Break Time Break Time Break Time Break Time

 11h-12h 4 Kiswahili Geography Physics History

1172 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

 Thursday 8h-9h 1 Kiswahili Geography Geography Kiswahili

 9h-10h 2 physics geography biology Kiswahili

 10h-11h 3 Break Time Break Time Break Time Break Time

 11h-12h 4 English Civics Biology Mathematics

 Friday 8h-9h 1 English Physics Geography History

 9h-10h 2 Geography Chemistry Mathematics Physics

 10h-11h 3 Break Time Break Time Break Time Break Time

 11h-12h 4 Geography Biology Chemistry Chemistry

4.3 The effectiveness of the class timetable developed using graph coloring in

teaching and learning process

The new class timetable was developed and sent to the Dodoma Central Secondary

School. After that, teachers at school started to use this timetable immediately, and this

class timetable was implemented for two weeks. This is because students were

approaching to start terminal examinations.

At the end of the study, opinions from teachers were collected using reflective

questions to assess effectiveness of our timetable. The following are examples of the

participants’ reflections:

 “The new timetable is good as compared to the old one” (Teacher 1)

 “There is new change since the new timetable has tried to resolve the problem of

collisions of class periods.” (Teacher 2)

 The new timetable has helped teachers to resolve the issue of collisions of class

periods “since all subjects are arranged clearly in the new timetable through

following the class periods properly as well as subject teachers.” (Teacher 3)

Based on the above participants’ opinions, all five teachers responded that the new

class timetable was good and friendly to them, this is because it helped to minimize

collision of class periods.

4.4 Training academic teachers on how to prepare class timetable using

graph coloring

At the beginning of this study, two academic teachers at Dodoma central school were

asked if they had heard about preparing class timetable using graph coloring and python

programming language. The academic teachers said no, they used only excel to prepare

school timetable. See appendix C which is the old class timetable for teaching students

in Form I to Form IV classes.

After that, the academic teachers were taught on how to prepare class timetable using

graph coloring while using python programming language in developing codes. At the

end of the training, python programming software was installed in teachers’ computers

so that they can practice and be competent to prepare the timetable by using graph

coloring in the future. Also, teachers reflected on their learning after being trained on

how to prepare timetable by using graph coloring and python programming language.

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1173

Some of their reflections are:

 “I have learned and get new knowledge on how to prepare class timetable by

using python software, and I am able to use this approach for class timetable

preparation” (Academic teacher 1)

 “I have surprised to see new and interesting approach to timetable construction

whereby you enter the subjects into the program, the timetable is generated

automatically” (Academic teacher 2)

 “Also, your timetable developed using graph coloring and implemented by

python programming language has helped to reduce collision of class periods.”

(Academic teacher 2)

 “I didn’t know how to use python programming language and graph coloring in

constructing a new timetable and for now I know how to prepare it.” (Academic

teacher 1)

From these reflections, we can see that using graph coloring to prepare class timetable

was potential for effective teaching and learning process at Dodoma Central secondary

school.

5. Conclusions

This study gives a lesson that nothing is impossible, what matter is provision of

knowledge and skills. Academic teachers were not aware of using graph coloring to

develop class timetable. However, after giving a training, the teachers were able to do so

and promise to practice it in preparing school timetabling using graph coloring and

python programming language. It was found that the developed class timetable using

graph coloring was effective in teaching and learning process because there was no

collision of class periods.

In closing, this study recommends that teachers at schools should use graph coloring

for preparing class period timetabling because of avoiding collision. Also, further study

should be conducted at Tanzanian’s schools on using graph coloring for examination

timetabling.

Acknowledgements

The author acknowledges seven teachers at Dodoma Central Secondary School for
active participation in this study.

1174 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

References

Burke, K., Elliman, G., & Weare, R. (1994). A university timetabling system based on graph

coloring and constraint manipulation. Journal of Research on Computing in Education, 27(1),

1-18.

Carter, M. (1986). Or practice—a survey of practical applications of examination timetabling

algorithms. Computers and Operations Research, 34(2), 193—202.

Carter, W., Laporte, G., & Lee, Y. (1996). Examination timetabling: Algorithmic strategies and

applications. Journal of the Operational Research Society 47(3), 373–383.

Deo, N. (1990). Graph theory with applications to engineering and computer Science. Prentice

Hall of India.

Dutton, R., & Brigham, R. (1981). A new graph coloring algorithm. Computer Journal, 24(1), 85–

86.

Eto, S., Kääriäinen, M., Kanste, O., Po ̈lkki, T., Utriainen, K., & Kyngäs, H. (2014). Qualitative

content analysis: A focus on trustworthiness. SAGE Open, 1—10. doi:

10.1177/2158244014522633

Kiaer, L., & Yellen, J. (1992). Weighted graphs and university timetabling. Computers and

Operations Research, 19(1), 59-67.

Merriam, S. (1988). Case study research in education: A qualitative approach. San Francisco, CA:

Jossey-Bass Publishers.

Merriam, S. (1998). Qualitative research and case study applications in education. San Francisco,

NY: California.

Merriam, S. B. (2009). Qualitative research a guide to design and implementation. San Francisco,

CA: Jossey-Bass.

Miner, K., Elmohamed, S., & Yau, W. (1995). Optimizing timetabling solutions using graph

coloring. Syracuse University.

Welsh, A., & Powell, B. (1967). An upper bound for the chromatic number of a graph and its

application to timetabling problems. The Computer Journal,10(1), 85-86.

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1175

Appendix A: Reflective questions

1. What can you say about this new class timetable?

2. Is there any change you have noticed after using a new class timetable? If yes, please

explain for me.

3. What can you say after using a new class timetable from the previous one? Please explain

for me.

4. How do you think the new timetable has helped you to achieve your teaching goal(s)?

Please explain for me.

5. What surprised you after using this new timetable. Please explain for me.

6. What have you learned that you did not know before using this new timetable? Please

explain for me.

7. Do you think this new timetable has helped you and other teachers to resolve the issue of

collision of class periods? How?

8. 8.How would you recommend for a new class timetable to other teachers?

Appendix B: Codes generated while developing algorithms for class timetabling using

python programming language

Code1: constructing form one timetable

import pathlib

import csv

subjects_list = []

class_list=[]

start_hour = 7

next_hour = 8

school_days = [

 'monday',

 'tuesday',

 'wednesday',

 'thursday',

 'friday'

]

time_slot_list = []

subject_per_slot = {}

MAX_HOUR_PER_SUBJECT = 6

subject_hour_count = {}

=================enter the list of classes contained to the school==============

def fill_out_class_list():PYT

"""Ask user classes and fill in classes list"""

classes = input('Type all class you want

and separate them by comma: ')

the_classes = classes.replace(', ', ',')

the_classes = the_classes.split(',')

for clas in the_classes:

1176 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

clas = classes.capitalize()

for x in the_classes:

print(x)

if not clas in class_list:

class_list.append(clas)

subject_hour_count[clas] = MAX_HOUR_PER_SUBJECT

==============================end of

class=======================================

def fill_out_subjects_list():

 print("==============SCHOOL TIME TABLE FOR FORM

ONE=======================")

 """Ask user subjects and fill in subjects list"""

 subjects = input('Type all subjects you want add in subjects list\

and separate them by comma: ')

 the_subjects = subjects.replace(', ', ',')

 the_subjects = the_subjects.split(',')

 for subject in the_subjects:

 subject = subject.capitalize()

 if not subject in subjects_list:

 subjects_list.append(subject)

 subject_hour_count[subject] = MAX_HOUR_PER_SUBJECT

def ask_hour():

 """Ask hour to user"""

 print(f'Subjects list: {subjects_list}')

 print(f'class list: {class_list}')

 # form_one=print('Enter form one class to continue')

 print(f'Planning time: {start_hour}h-{next_hour}h')

 user_answer = input('What\'s subject do you want put here? ')

 return user_answer

def fill_in_timetable():

 # print("Enter the subjects for Form ome (1) Students")

 """Display an hour & ask user which subject he want to put there"""

 global start_hour

 global next_hour

 for day in school_days:

 the_hour = {}

 time = 0

 start_hour = 8

 next_hour = 9

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1177

 print('\n---------------------------')

 print(f'{day.capitalize()} timetable')

 print('---------------------------\n')

 while time < 4:

 hour_format = f'{start_hour}h-{next_hour}h'

 # it's represent 8 hours/per day for school

 if time == 2: # if it's a midday (12.am), make a break

 # Add a break in timetable with 'Break time' as inscription

 subject_per_slot[hour_format] = ['Break time']

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append('hour_format')

 else:

 chosen_subject = ask_hour().capitalize()

 print(f'start_hour: {start_hour}')

 print(f'next_hour: {next_hour}')

 # Check that subject chosen by user is in subjects list

 while not chosen_subject in subjects_list:

 print(f'{chosen_subject} is not in subjects list.')

 print('Choose another subject.')

 chosen_subject = ask_hour().capitalize()

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append(hour_format)

 subject_per_slot[hour_format] = [chosen_subject]

 else:

 subject_per_slot[hour_format] += [chosen_subject]

 # Check that chosen subject max hours didn't reached

 for subject, max_hour in subject_hour_count.items():

 if chosen_subject == subject:

 # remove one hour on subject max hour

 subject_hour_count[chosen_subject] = max_hour - 1

 # go to next hour

 start_hour += 1

 next_hour += 1

 time += 1

fill_out_class_list()

fill_out_subjects_list()

fill_in_timetable()

1178 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

print(f'Subject per slot: {subject_per_slot}')

timetable_path = pathlib.Path.cwd() / 'form_one_timetable.csv'

with open(timetable_path, 'w') as timetable_file:

 timetable_writing = csv.writer(timetable_file)

 # Write headers into csv file

 csv_kichwa_kikuuu=['DODOMA CENTRAL SECONDARY SCHOOL - O LEVEL TIME

TABLE 2021']

 csv_kichwa_kikuuu=['FORM ONE']

 csv_headers = ['Hours']

 csv_headers.extend(school_days)

 timetable_writing.writerow(csv_kichwa_kikuuu)

 timetable_writing.writerow(csv_headers)

 # Write content into csv file

 for time_slot, concerned_subjects in subject_per_slot.items():

 time_line = [time_slot]

 concerned_subjects_list = []

 if concerned_subjects == ['Break time']:

 for x in range(0, len(school_days)):

 concerned_subjects_list.append('Break time')

 else:

 concerned_subjects_list = concerned_subjects

 final_line = time_line + concerned_subjects_list

 timetable_writing.writerow(final_line)

 print('Your form one timetable is ready')

Code for constructing Form two timetable

import pathlib

import csv

subjects_list = []

class_list=[]

start_hour = 7

next_hour = 8

school_days = [

 'monday',

 'tuesday',

 'wednesday',

 'thursday',

 'friday'

]

time_slot_list = []

subject_per_slot = {}

MAX_HOUR_PER_SUBJECT = 6

subject_hour_count = {}

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1179

=================enter the list of classes contained to the school==============

def fill_out_class_list():

 """Ask user classes and fill in classes list"""

 classes = input('Type all class you want \

and separate them by comma: ')

 the_classes = classes.replace(', ', ',')

 the_classes = the_classes.split(',')

 for clas in the_classes:

 clas = classes.capitalize()

 for x in the_classes:

 print(x)

 if not clas in class_list:

 class_list.append(clas)

 subject_hour_count[clas] = MAX_HOUR_PER_SUBJECT

==============================end of

class=======================================

def fill_out_subjects_list():

 print("==============SCHOOL TIME TABLE FOR FORM TWO

2021=======================")

 """Ask user subjects and fill in subjects list"""

 subjects = input('Type all subjects you want add in subjects list and separate them by

comma: ')

 the_subjects = subjects.replace(', ', ',')

 the_subjects = the_subjects.split(',')

 for subject in the_subjects:

 subject = subject.capitalize()

 if not subject in subjects_list:

 subjects_list.append(subject)

 subject_hour_count[subject] = MAX_HOUR_PER_SUBJECT

def ask_hour():

 """Ask hour to user"""

 print(f'Subjects list: {subjects_list}')

 print(f'class list: {class_list}')

 # form_one=print('Enter form one class to continue')

 print(f'Planning time: {start_hour}h-{next_hour}h')

 user_answer = input('What\'s subject do you want put here? ')

 return user_answer

def fill_in_timetable():

1180 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

 # print("Enter the subjects for Form ome (1) Students")

 """Display an hour & ask user which subject he want to put there"""

 global start_hour

 global next_hour

 for day in school_days:

 the_hour = {}

 time = 0

 start_hour = 8

 next_hour = 9

 print('\n---------------------------')

 print(f'{day.capitalize()} timetable')

 print('---------------------------\n')

 while time < 4:

 hour_format = f'{start_hour}h-{next_hour}h'

 # it's represent 8 hours/per day for school

 if time == 2: # if it's a midday (12.am), make a break

 # Add a break in timetable with 'Break time' as inscription

 subject_per_slot[hour_format] = ['Break time']

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append('hour_format')

 else:

 chosen_subject = ask_hour().capitalize()

 print(f'start_hour: {start_hour}')

 print(f'next_hour: {next_hour}')

 # Check that subject chosen by user is in subjects list

 while not chosen_subject in subjects_list:

 print(f'{chosen_subject} is not in subjects list.')

 print('Choose another subject.')

 chosen_subject = ask_hour().capitalize()

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append(hour_format)

 subject_per_slot[hour_format] = [chosen_subject]

 else:

 subject_per_slot[hour_format] += [chosen_subject]

 # Check that chosen subject max hours didn't reached

 for subject, max_hour in subject_hour_count.items():

 if chosen_subject == subject:

 # remove one hour on subject max hour

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1181

 subject_hour_count[chosen_subject] = max_hour - 1

 # go to next hour

 start_hour += 1

 next_hour += 1

 time += 1

fill_out_class_list()

fill_out_subjects_list()

fill_in_timetable()

print(f'Subject per slot: {subject_per_slot}')

timetable_path = pathlib.Path.cwd() / 'form_two_timetable.csv'

with open(timetable_path, 'w') as timetable_file:

 timetable_writing = csv.writer(timetable_file)

 # Write headers into csv file

 csv_kichwa_kikuuu=['DODOMA CENTRAL SECONDARY SCHOOL - O LEVEL TIME

TABLE 2021']

 csv_kichwa_kikuuu=['FORM TWO']

 csv_headers = ['Hours']

 csv_headers.extend(school_days)

 timetable_writing.writerow(csv_kichwa_kikuuu)

 timetable_writing.writerow(csv_headers)

 # Write content into csv file

 for time_slot, concerned_subjects in subject_per_slot.items():

 time_line = [time_slot]

 concerned_subjects_list = []

 if concerned_subjects == ['Break time']:

 for x in range(0, len(school_days)):

 concerned_subjects_list.append('Break time')

 else:

 concerned_subjects_list = concerned_subjects

 final_line = time_line + concerned_subjects_list

 timetable_writing.writerow(final_line)

 print('Your form two timetable is ready')

Code for constructing Form three timetable

import pathlib

import csv

subjects_list = []

class_list=[]

start_hour = 7

next_hour = 8

1182 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

school_days = [

 'monday',

 'tuesday'

]

time_slot_list = []

subject_per_slot = {}

MAX_HOUR_PER_SUBJECT = 6

subject_hour_count = {}

=================enter the list of classes contained to the school==============

def fill_out_class_list():

 """Ask user classes and fill in classes list"""

 classes = input('Type all class you want \

and separate them by comma: ')

 the_classes = classes.replace(', ', ',')

 the_classes = the_classes.split(',')

 for clas in the_classes:

 clas = classes.capitalize()

 for x in the_classes:

 print(x)

 if not clas in class_list:

 class_list.append(clas)

 subject_hour_count[clas] = MAX_HOUR_PER_SUBJECT

==============================end of

class=======================================

def fill_out_subjects_list():

 """Ask user subjects and fill in subjects list"""

 subjects = input('Type all subjects you want add in subjects list\

and separate them by comma: ')

 the_subjects = subjects.replace(', ', ',')

 the_subjects = the_subjects.split(',')

 for subject in the_subjects:

 subject = subject.capitalize()

 if not subject in subjects_list:

 subjects_list.append(subject)

 subject_hour_count[subject] = MAX_HOUR_PER_SUBJECT

def ask_hour():

 """Ask hour to user"""

 print(f'Subjects list: {subjects_list}')

 print(f'class list: {class_list}')

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1183

 # form_one=print('Enter form one class to continue')

 print(f'Planning time: {start_hour}h-{next_hour}h')

 user_answer = input('What\'s subject do you want put here? ')

 return user_answer

def fill_in_timetable():

 # print("Enter the subjects for Form ome (1) Students")

 """Display an hour & ask user which subject he want to put there"""

 global start_hour

 global next_hour

 for day in school_days:

 the_hour = {}

 time = 0

 start_hour = 8

 next_hour = 9

 print('\n---------------------------')

 print(f'{day.capitalize()} timetable')

 print('---------------------------\n')

 while time < 4:

 hour_format = f'{start_hour}h-{next_hour}h'

 # it's represent 8 hours/per day for school

 if time == 2: # if it's a midday (12.am), make a break

 # Add a break in timetable with 'Break time' as inscription

 subject_per_slot[hour_format] = ['Break time']

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append('hour_format')

 else:

 chosen_subject = ask_hour().capitalize()

 print(f'start_hour: {start_hour}')

 print(f'next_hour: {next_hour}')

 # Check that subject chosen by user is in subjects list

 while not chosen_subject in subjects_list:

 print(f'{chosen_subject} is not in subjects list.')

 print('Choose another subject.')

 chosen_subject = ask_hour().capitalize()

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append(hour_format)

1184 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

 subject_per_slot[hour_format] = [chosen_subject]

 else:

 subject_per_slot[hour_format] += [chosen_subject]

 # Check that chosen subject max hours didn't reached

 for subject, max_hour in subject_hour_count.items():

 if chosen_subject == subject:

 # remove one hour on subject max hour

 subject_hour_count[chosen_subject] = max_hour - 1

 # go to next hour

 start_hour += 1

 next_hour += 1

 time += 1

fill_out_class_list()

fill_out_subjects_list()

fill_in_timetable()

print(f'Subject per slot: {subject_per_slot}')

timetable_path = pathlib.Path.cwd() / 'form_three_timetable.csv'

with open(timetable_path, 'w') as timetable_file:

 timetable_writing = csv.writer(timetable_file)

 # Write headers into csv file

 csv_kichwa_kikuuu=['DODOMA CENTRAL SECONDARY SCHOOL - O LEVEL TIME

TABLE 2021']

 csv_kichwa_kikuuu=['FORM THREE']

 csv_headers = ['Hours']

 csv_headers.extend(school_days)

 timetable_writing.writerow(csv_kichwa_kikuuu)

 timetable_writing.writerow(csv_headers)

 # Write content into csv file

 for time_slot, concerned_subjects in subject_per_slot.items():

 time_line = [time_slot]

 concerned_subjects_list = []

 if concerned_subjects == ['Break time']:

 for x in range(0, len(school_days)):

 concerned_subjects_list.append('Break time')

 else:

 concerned_subjects_list = concerned_subjects

 final_line = time_line + concerned_subjects_list

 timetable_writing.writerow(final_line)

 print('Your form three timetable is ready')

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1185

Code for constructing Form four timetable

import pathlib

import csv

subjects_list = []

class_list=[]

start_hour = 7

next_hour = 8

school_days = [

 'monday',

 'tuesday',

 'wednesday',

 'thursday',

 'friday'

]

time_slot_list = []

subject_per_slot = {}

MAX_HOUR_PER_SUBJECT = 6

subject_hour_count = {}

=================enter the list of classes contained to the school==============

def fill_out_class_list():

 """Ask user classes and fill in classes list"""

 classes = input('Type all class you want \

and separate them by comma: ')

 the_classes = classes.replace(', ', ',')

 the_classes = the_classes.split(',')

 for clas in the_classes:

 clas = classes.capitalize()

 for x in the_classes:

 print(x)

 if not clas in class_list:

 class_list.append(clas)

 subject_hour_count[clas] = MAX_HOUR_PER_SUBJECT

==============================end of

class=======================================

def fill_out_subjects_list():

 print("==============SCHOOL TIME TABLE FOR FORM FOUR

2021=======================")

 """Ask user subjects and fill in subjects list"""

 subjects = input('Type all subjects you want add in subjects list\

and separate them by comma: ')

 the_subjects = subjects.replace(', ', ',')

 the_subjects = the_subjects.split(',')

1186 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

 for subject in the_subjects:

 subject = subject.capitalize()

 if not subject in subjects_list:

 subjects_list.append(subject)

 subject_hour_count[subject] = MAX_HOUR_PER_SUBJECT

def ask_hour():

 """Ask hour to user"""

 print(f'Subjects list: {subjects_list}')

 print(f'class list: {class_list}')

 # form_one=print('Enter form one class to continue')

 print(f'Planning time: {start_hour}h-{next_hour}h')

 user_answer = input('What\'s subject do you want put here? ')

 return user_answer

def fill_in_timetable():

 # print("Enter the subjects for Form ome (1) Students")

 """Display an hour & ask user which subject he want to put there"""

 global start_hour

 global next_hour

 for day in school_days:

 the_hour = {}

 time = 0

 start_hour = 8

 next_hour = 9

 print('\n---------------------------')

 print(f'{day.capitalize()} timetable')

 print('---------------------------\n')

 while time < 4:

 hour_format = f'{start_hour}h-{next_hour}h'

 # it's represent 8 hours/per day for school

 if time == 2: # if it's a midday (12.am), make a break

 # Add a break in timetable with 'Break time' as inscription

 subject_per_slot[hour_format] = ['Break time']

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append('hour_format')

 else:

 chosen_subject = ask_hour().capitalize()

 print(f'start_hour: {start_hour}')

 print(f'next_hour: {next_hour}')

 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188 1187

 # Check that subject chosen by user is in subjects list

 while not chosen_subject in subjects_list:

 print(f'{chosen_subject} is not in subjects list.')

 print('Choose another subject.')

 chosen_subject = ask_hour().capitalize()

 # Add hour format while making sure we avoid duplicate

 if not hour_format in time_slot_list:

 time_slot_list.append(hour_format)

 subject_per_slot[hour_format] = [chosen_subject]

 else:

 subject_per_slot[hour_format] += [chosen_subject]

 # Check that chosen subject max hours didn't reached

 for subject, max_hour in subject_hour_count.items():

 if chosen_subject == subject:

 # remove one hour on subject max hour

 subject_hour_count[chosen_subject] = max_hour - 1

 # go to next hour

 start_hour += 1

 next_hour += 1

 time += 1

fill_out_class_list()

fill_out_subjects_list()

fill_in_timetable()

print(f'Subject per slot: {subject_per_slot}')

timetable_path = pathlib.Path.cwd() / 'form_four_timetable.csv'

with open(timetable_path, 'w') as timetable_file:

 timetable_writing = csv.writer(timetable_file)

 # Write headers into csv file

 csv_kichwa_kikuuu=['DODOMA CENTRAL SECONDARY SCHOOL - O LEVEL TIME

TABLE 2021']

 csv_kichwa_kikuuu=['FORM FOUR']

 csv_headers = ['Hours']

 csv_headers.extend(school_days)

 timetable_writing.writerow(csv_kichwa_kikuuu)

 timetable_writing.writerow(csv_headers)

 # Write content into csv file

 for time_slot, concerned_subjects in subject_per_slot.items():

 time_line = [time_slot]

 concerned_subjects_list = []

 if concerned_subjects == ['Break time']:

1188 Deogratias / International Journal of Curriculum and Instruction 14(2) (2022) 1166–1188

 for x in range(0, len(school_days)):

 concerned_subjects_list.append('Break time')

 else:

 concerned_subjects_list = concerned_subjects

 final_line = time_line + concerned_subjects_list

 timetable_writing.writerow(final_line)

 print('Your form four timetable is ready')

Appendix C: Old timetable used by Dodoma Central secondary school before

implementing this study

Time Period Subject Form Day

7:00-8:10 1 Test I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

8:10-8:50 Mathematics I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

8:50-9:30 2 Mathematics I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

9:30-10:10 3 Kiswahili I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

10:10-10:50 4 Chemistry I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

10:50-11:10 5 Break I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

11:10-11:50 6 English I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

11:50-12:30 7 English I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

12:30-13:10 8 Civics I, II, III, IV Monday, Tuesday, Wednesday,

Thursday, Friday

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the Journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons

Attribution license (CC BY-NC-ND) (http://creativecommons.org/licenses/by-nc-nd/4.0/).

